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Abstract

We consider the valuation of collateralized derivative contracts such as interest rate swaps or
forward FX contracts. We allow for posting securities or cash in different currencies. In the latter
case, we focus on using overnight index rates on the interbank market. Using time varying haircuts,
we provide an intuitive way to derive the basic discounting results, keeping in line with the most
standard theoretical and market views. In a number of cases associated with margining with major
central counterparties, pricing rules for collateralized trades remain linear, thus the use of
(multiple) discount curves. We also show how to deal with partial collateralization, involving
haircuts, asymmetric CSA, counterparty risk and funding costs. We therefore intend to provide a
unified view. Mathematical or legal details are not dealt with and we privilege financial insights
and easy to grasp concepts and tools.
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Introduction

The pricing of collateralized OTC contracts, such as swaps ruled by numerous CSA involved in ISDA
master agreements or cleared on LCH.Clearnet, ICE, CME, etc. has become a subject of great
importance. It concerns the pricing of new trades, of novation trades and the backload of older
trades to a clearinghouse.

The aim of this paper is to provide an intuitive approach to the main results, some of them such as
OIS discounting routinely used by market practitioners, an understanding of the (strong) assumptions
involved and, on the other hand, to emphasize the wide range of applications. A number of results
are connected to the recursive approach introduced by Cvitani¢ and Karatzas (1993), Duffie and
Huang (1996), Duffie et al. (1996), El Karoui et al. (1997), which allows a comprehensive treatment of
different lending and borrowing rates. The use of time varying haircuts and collateral sets
encompasses the standard features of collateralization schemes.
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Among academic papers that deal with the valuation of collateralized derivative contracts, Johannes
and Sundaresan (2007) can be seen as pioneering while the papers by Fujii et al. provide a deep
investigation of many pricing issues. Bianchetti (2010), Kenyon (2010), Bielecki et al. (2011), Brigo et
al. (2011), Castagna (2013), Crepey (2011, 2012a, 2012b), Pallavicini, Perini and Brigo (2012), Kan and
Pedersen (2011), Piterbarg (2010, 2012) also deal with various aspects of the valuation of
collateralized trades within the new financial architecture. This field of research is still in progress, a
number of issues such as the impact of funding costs, optimal posting of collateral, gap (or slippage)
risks and the impact of initial margin may not be matter of consensus.

The paper is organized as follows:

Section 1 presents the theoretical pricing framework, where we allow for different lending and
borrowing default-free rates. This can be of importance when considering partial collateralization
schemes where trades need to be funded in the market. Comparisons with outstanding
methodologies within that context are recalled.

Section 2 provides a simplified framework regarding the expected rate of return of posted collateral
including bonds and foreign currencies. For simplicity, we have restricted ourselves to the case where
no haircut is applied to posted bonds, corresponding to the case of major government issues.

Section 3 relates variation margins to collateral accounts, introduces settlement prices for
collateralized trades and provides a general additive formula, i.e. a corrective term to
uncollateralized prices.

Section 4 deals with various collateralization schemes in an integrated framework. This is achieved
through the notion of local haircuts applied at CSA level. This leads to a recursive discounting pricing
formula that applies both to collateralized and uncollateralized prices. We recall the standard cases
of OIS discounting, futures’ pricing, costless collateral. The optimal choice of posted securities is
investigated.

Section 5 provides a general approach to multiple discount curves in the context of swaps or of
forward contracts. Suitable changes of measure are introduced leading to simple pricing formulas
and generic convexity adjustments. Standard examples, involving easy to bootstrap collateralized
discount factors, are investigated. It is noticeable that, in the above setting, we remain in a linear
pricing framework, thus the existence of discount factors.

Section 6 broadens the view by considering imperfect collateralization schemes, different lending
and borrowing rates and CVA effects altogether. Though the CVA approach used here is not identical
to market practice, it can be thought of as a first-order approximation. Above all, it provides an
integrated and easy to grasp pricing framework.

Section 7 deals with trade contributions in a non linear pricing framework. We provide some results
that connect the stochastic discount factor to marginal pricing at book level and easy to compute
trade contributions, some topics of great practical importance.

1. Pricing default-free uncollateralized contracts with different lending and borrowing rates

r(t) will denote the usual default-free short rate at time t as in the standard Heath-Jarrow-Morton

case. This is taken as a starting point to keep in line with the standard mathematical finance
framework and thus simplifying the exposition.



Overnight “rates” such as Eonia, Sonia or the effective Fed funds rates are related to unsecured
interbank loans. Piterbarg (2010, equation 1) or Morini and Prampolini (2010) assimilate r(t) and

overnight rates (denoted by I (t) in Piterbarg), which can be associated with the assumption that

bank defaults can be foreseen over a one day time-horizon. On the other hand, Afonso et al. (2011),
Pallavicini, Perini and Brigo (2012) state that there is a default component in overnight rates. Apart
from periods of market stress, this default component is likely to be small, though difficult to assess,
given that r(t) is not directly observable. As mentioned in Pallavicini et al. (2012), r(t) can be seen

as an instrumental variable that eventually vanishes in a number of cases.

Bergman (1995) introduces a (default-free) lending short rate r(t) and a borrowing short rate R(t),
with r(t) <R(t). The difference R(t)-r(t) corresponds to the (funding) liquidity premium y, in
Castagna (2011) or to the (default-free) liquidity basis in Morini and Prampoloni (2010), i.e. the

spread over the risk-free rate r(t) at which a default-free entity would borrow in the market. This

also corresponds to StF in Castagna (2012, 2013) or I*, the liquidity bases in Pallavicini et al. (2012).

t
Bergman considers a savings account [ and a borrowing account L, such that ﬂ(t)zexpjr(s)ds
0

t
and L(t):eXpIR(S)dS. To preclude arbitrage opportunities, one cannot borrow and lend
0

simultaneously. Such constraints on account holdings are convex and are dealt with in Cvitani¢ and
Karatzas (1993). Crepey (2012a) defines two external investing and funding assets, the funding asset
jumping downwards at default time of the pricing entity. As stated in Fries (2010), the above
approaches reflect the benefit, at the entity level, of cancelling a fraction of outstanding debt at
default time. In Fries terminology, this corresponds to the third party (or mark-to-market) liquidation
view. As a consequence, there is no own credit risk term when discounting receivables (positive cash-
flows) as in Burgard and Kjaer (2011). We refer to Hull and White (2012) for further discussion on this
controversial issue.

Within Bergman setting, extending results from Korn (1992), Cvitani¢ and Karatzas (1993) consider a
model with d — primary traded assets driven by a d — dimensional Brownian motion and an invertible

volatility matrix. Going along standard lines, they construct through Girsanov theorem a Qﬂ—

measure such that prices of primary (hedging) assets discounted by f(t) are Qﬁ— martingales. The

existence of such a measure is postulated in Johannes and Sundaresan (2007), Piterbarg (2010,
equation 1), Fries (2010), Fujii, Shimada and Takahashi (2010), Fujii and Takahashi (2011), Castagna

(2013). We will thereafter assume that the set of traded assets is large enough for Qﬁ to be uniquely

defined, a common feature in HIM models.

One interesting outcome of the above approach is that a large class of contingent claims, including
call options, is replicable. The replication price of an uncollateralized contract p“ (t) is obtained as

the unique solution of the following backward stochastic differential equation (BSDE, see also El
Karoui et al. (1997)):

EX [dp (1)]= ( RO, o .0 * r(s)l{pu (S)SO}) pY (t)dt (1.1)



where the BSDE generator g(p):Rp+ +rpis a key tool. In such a default-free setting, given a
terminal payoff X(T), we get:

T

p’ (t)=EY {X (T )exp[—I(R(s)l{pU(s)>o} + r(s)l{pu(s)q)})dsﬂ (1.2)

t
Such equations are well known in finance. They have been considered in a CVA context by Duffie and
Huang (1996) and Duffie et al. (1996) and more recently by Crépey (2011), Fujii and Takahashi (2012)
and Henry-Labordere (2012). We also refer to Cesari et al. (2010), Burgard and Kjaer (2011) for
closely related approaches.

Equation (1.2) actually provides the opposite of the replication price of —X (T). A dealer holding an
amount X (T) can cancel out his position by replicating —X (T). As a consequence, a pure asset
cash-flow ( X(T) >0) is discounted at the high rate R(t), while a pure liability cash-flow ( X (T)<0)
is discounted at the low rate r(t). We think that this convention is more meaningful and
conservative on financial grounds than considering the replication price of X(T) (that would involve
switching R(t) and r(t)).

Equation (1.2) provides a standalone replication price. When considering a trade within a portfolio,

the condition {pu (s)> O} should be replaced by a positivity condition on the value of the portfolio.

This is dealt with at this end of this paper when addressing trade contributions.

Similarly, if the hedging instruments have some cash impacts, the positivity condition needs to cope
with the total cash balance. The simplest case would correspond to hedging with forward contracts
of the same maturity as the derivative to be priced, since no impact on the cash balance would occur.

One could think of borrowing on the cash market at the low rate r(t) and lend at the high rate R(t).

This would correspond to the case where a derivatives dealer is a liquidity provider rather than a
liquidity taker. As above, we have rather chosen a conservative approach though it would need to be
adapted to individual cases.

Equation (1.2) is consistent with equation (34) in Castagna (2013), when ¥ =0 (no collateralization

scheme). The positivity condition in the quoted paper is put on the cash account, which inverts signs
when using the price of the derivative.

Piterbarg (2010) introduces a funding rate r_(t) which is meant to include a default component.
However, in his framework, counterparty default is ignored and in further computations (see for
example, equation 3), I () acts as a default free borrowing and lending rate in the cash market
(with equality between these two rates) and is de facto equal to r(t), while the rate r_(t) is further

assimilated with the rate of cash collateral (c(t) in our notations).

While the pricing framework can cope with different borrowing and lending rates, to ease the
exposition, we will keep tied to a unique default-free cash rate, i.e. r(t)=R(t), until we consider

asymmetric CSAs.



Piterbarg (2012) or Macey (2011) directly derive no arbitrage restrictions among settlement prices of
fully collateralized derivatives under different CSAs, from which a risk-neutral measure is constructed.
Thus, there is no a priori use of the theoretical default-free short rate r(t) . However, when it comes
up to partially collateralized derivatives, we need to introduce some rate for lending or borrowing
cash, which acts as default-free short rate. Eventually, as mentioned in Piterbarg (2010), we may
end-up with the same pricing measure for collateralized and uncollateralized contracts, which

actually appears to be Q” .

2. Collateral assets
2.1. Cash in different currencies and securities posted as collateral.

Quite often, cash is used as collateral. We will denote by c(.) the rate (with continuous

compounding) paid on the collateral account, typically EONIA or fed fund rate. We will also consider
the cases where ¢(.)=0 and c(.)=r(.).

To cope with various netting agreements, we need to enlarge the cash collateral setting. Let us
denote by A(t), the price at time t of the posted asset, which may be a bond or some currency. For
simplicity, we will assume that A(.) is a positive semimartingale admitting the decomposition:
dA(t)
—==r,(t)dt+dM ,(t (2.1)
A A (1) A(0)
where M, is a Q” - martingale. We assume that the price can actually be observed and that the

market for the security A is frictionless, i.e. no bid-ask spread and constant unit price. For simplicity,
we will thereafter consider a single collateral asset though the results readily extend to a portfolio of
collateral assets.

As is the case in a standard bilateral CSA or when margining through a CCP, we will assume that the
collateral rate does not change when a party switches from collateral giver to receiver.

2.2. Posting bonds.

In the repo market, a large set of securities can be posted, quite often bonds. We show that the
short-term repo rate can be seen as the expected rate of return of the bond under Q” . This holds

under assumptions detailed and discussed below. The core point is that a short-term repo contract
with no haircut can also be seen as an “instantaneous” forward bond contract and the repo rate is
then related to a default-free forward bond price. This result is a key point in subsequent analysis
related to optimal choice of collateral and discounting results.

Let us consider a short-term repo contract, say between dates t and t+dt. As above A(t) denotes

the bond price at date t and no coupon is to be paid between t and t+dt. Let us assume that no
haircut is applicable®. Thus, the repo contract turns out to be a (short-term) forward contract, with

no payment at inception and a payment equal to A(t+dt)—(1+repo, (t)dt) A(t) . If the payment is

* One could think of Treasury GC as a proxy.



made for sure, i.e. none of the parties is in default at date t+dt , we have
E [ A(t+dt)—(1+repo, (t)dt) At) | =0 and thus:

ry(t)dt=E, {A(t)}_repoA(t)dt (2.2)

The above result is related to Barden (2009) or Piterbarg (2010).

If defaults can occur but are predictable, then one can state whether or not the parties will be in
default at date t+dt. Clearly, there is no reason why a trade would occur with one of parties going
to default with certainty at t + dt and we will not further investigate this unlikely case.

There are a number of cases where defaults can occur, yet (1+ repo, (t)dt) A(t) can still be seen as a

default-free forward price.

The first one corresponds to cancellation® of the deal at default. We denote by A(t)dt, the

probability of the deal to be cancelled®, due to default of one of the parties. If occurrence of defaults
and changes in collateral asset are independent, the pricing equation becomes:

EY [(A(t +dt) - (1+ repo, (t)dt) A(t))x(l—/i(t)dt)] =0 (2.3)
dA(t)
A(t)
to the non defaulted party is of the form 5maX(A(t+dt)—(1+rep0A(t)dt)A(t),0) and J is a
recovery rate. Provided that the two parties have the same recovery rate and default probability,
B

EtQ dA(t)

A(t)
“prime” banks are to trade together.

B
Thus, we still have r,(t)dt = EtQ { }: repo, (t)dt . Let us consider the case where the payment

}: repo , (t)dt still holds. This symmetry between the parties would occur if “tier-one” or

Eventually, if we assume that A is driven by a Brownian motion or that its jump component is
independent of the default counting processes of the two involved parties, then

EtQp {M
Alt)

instantaneous forward price of a bond. This corresponds to a “no gap risk” at default assumption.

}zrepoA(t)dt is still valid and CVA/DVA terms can be neglected when computing the

In our simplified setting regarding counterparty and operational risks, the repo rate repo,(t) is thus

only related to security A, without consideration of the parties identity’.

> In such a framework, the claim on default for a repo contract would differ from the claim associated
with other OTC trades, such as interest rate swaps. We may relate cancellation to fails-to-deliver
without penalty.

® Default times of the counterparties are then assumed to be totally inaccessible. A(t) is here the
intensity of the first to default-time.

7 1f the bond A is special, the corresponding repo rate is lower.
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Let us remark that a short-term repo contract with no haircut can be seen as a perfectly
collateralized trade. We are considering buying a security deliverable at date t +dt, the transaction
being secured with cash and the cash collateral rate being equal to repo,(t). In other words, the
repo rate can also be seen as a cash collateral rate. The term A(t+dt)—(1+repoA(t)dt)A(t)

corresponds to the variation margin to be paid on an open repo (see below regarding the
computation of variation margins).

As already mentioned, the repo rate is tied to the instantaneous forward price of a bond. We
emphasize that we directly consider a forward market and related forward prices without refereeing
to lending cash between t and t+dt. This is purposeless since there are no cash-flows being
exchanged at date t and no need for transferring funds across time. As a consequence, the default-
free forward price is primitive and is not derived from a borrowing and lending cash market as in the
standard cash and carry approach.

2.3. Posting foreign currencies.

In the case of cash-collateral paid in the base currency (say USD), the collateral account typically
earns the effective fed funds rate, thus r, = c® and the settlement price of a collateralized trade is
computed by discounting the terminal cash-flow (expressed in USD) at the collateral rate under the

usual risk-neutral probability, Qﬁ$ associated with the USD savings account numeraire.

We may need to consider collateral accounts in different currencies. As an example, we could

t
consider a cash-collateral account in a foreign currency, for instance A®(t) = FX ¢*(t) eXpJC€ (s)ds,
0

where FX *(t) corresponds to the spot exchange rate and cf(t) to the Eonia. As for bonds, we will

CdAS(t)

have: At =r(O)dt+dM . (t), M . beinga Qﬂ$ martingale, and we need to determine 1, (t).

For this purpose, we can go along the same lines as for bonds. Let us introduce an instantaneous

forward FX contract that is assumed to be default-free and denote by FX €/Ss(t)(1+ird$/€ (t)dt), the

forward exchange rate, where ird”¢(t) is the interest differential between USD and EUR. As for the
repo contract, we have:

EQ” [ X (t+dt) - FX 5 (1) (L+ird”* (t)dt) | =0 (2.4)
dA®(t)
A*(1)

€ A $/€
re(t)=c(t)+ird™"(t) (2.5)

The counterparty risk issues associated with the instantaneous forward FX contract are the same as

dFX €/$(t) ] P
) =ird”*(t)dt and r. (t)dt = E°

Thus, EtQ/’${ }:(c€(t)+ird$’€(t))dt leads to:

the ones already discussed in the repo case. In the simplest cases of no gap risk, the CVA/DVA terms
can be neglected, as if the instantaneous forward FX contract was default-free. This instantaneous
forward FX contract approach is being used in Macey (2011) or Piterbarg (2012).



In the standard mathematical finance framework, we would have: ird*¢(t) = r®(t) - ré(t), where

r*(t),ré(t) are the instantaneous USD and EUR default-free rates and we then get a result similar to
Fujii et al. (2010), equation (3.13) or Castagna (2012), equation (11). As for calibration issues, the

interest rate differential ird¥¢(t) can be directly inferred from the FX market, while separate

calibration of r*(t) and ré(t) can be problematic.

3. Variation margins, collateral accounts, settlement prices and the additive formula

3.1 Variation margins paid on a collateral account.

The computation of variation margins involves a collateral account. We will denote by V(S) the

amount at date S of the collateral account. The amount of the collateral account is the market value
of the securities being posted as collateral. If V(S)>0, the pricing entity receives collateral, if

V (s) <0, the pricing entity gives collateral.

At time s, t <s<T, the number of securities posted on the collateral account is equal to —-

Vi)
s

value of the posted collateral at s+ ds is then equal to \QES; X A(s + ds) 2
S

As a consequence, the variation margin for the time interval between S and s+ds is equal to:
dA(s)
A(s)

+dVM (s), the term V(s) x (( )) corresponds to the self-financed part.

dVM (s) =V (s +ds) — 8><A(s+ds) dVv(s) -V (s)—= (3.1)

dA(s)
A(s)

The variation margin dVM (s) corresponds to the inflow in the collateral account.

Since dV (s) =V (s) x

A(s+ds)
A(s)
dVM (s) =dV (s) -V (s)c(s)ds (see Piterbarg (2012)) and is basically an extension of the future’s case

where dVM (s)=dV (s).

In the case of cash collateral with rate c(.), =1+c(S)ds and the variation margin equals

3.2 Settlement prices and the additive formula.

We will consider a collateralized trade with single maturity T . This readily extends to multiple
payment dates as in the case of interest rate swaps.

The contractual payoff at date T paid in the base currency, say USD, will be denoted by X (T). As

stated before, we do not take into account immediately the possibility of default. Apart from interest

s V()
A(s)

payment.

A(S+ds) can be seen as the value of the collateral account, prior to the variation margin



rate swaps, we could think of forward FX contracts, securities lending and repo transactions as other
examples involved in collateralized transactions.

p° (t) will denote the settlement price at time t of a collateralized trade with maturity T (in the

same base currency) and our purpose is the computation of such a settlement price. p°(t) will play
a key role in margining, either for the computation of variation margins or regarding the collateral
account amount. The settlement price will converge at time T to the contractual cash-flow X(T),

thus the same notation. For simplicity, we implicitly assume that the contract is cash-settled.

Let us detail the various cash-flows at hand. The net cash-flow at inception date t is equal to
—p*(t)+V (t), where p°(t) is the settlement or collateralized price and V (t) is the value of the
posted collateral. The net cash-flow at expiration of the contract is X(T)—V(T). The pricing

equation also takes into account the collateral cash-flows, most notably the variation margins paid
between t and T . Using the pricing framework stated in Section 1, and assuming same borrowing
and lending default-free rates leads to:

s T

—|r(u)du —jr(s)ds

ps(t)=p’(t)+EY V(t)+]e © dVM(s)-V(T)e =0 (3.2)

Where pY(t) is the uncollateralized price, V(s), t <s<T is the value of the collateral account at
time S and dVM(s) is the variation margin. Let us remark that that V(.) is not self-financed since

there are some inflows or outflows, i.e. the variation margins.

It is interesting to consider the present value of the variation margins in isolation and consider the
difference between uncollateralized and collateralized prices.

Using the above results, the time t present value of cash-flows associated with managing the
collateral account can be written as:

EY |V (t) +]e7r(u)du [dv (5)-V (s) d:((ss’))]—va)e«r(u)d (3.3)

The present value of cash-flows associated with the management of the collateral account is the
additive correcting term to switch from an uncollateralized PV to a collateralized PV. It is worth
noting that this holds for all collateralization schemes as only the value V(t) of the collateral
account is involved and not the settlement price p° (t) The present value of collateral cash-flows

can eventually be written as’:

s

—jr(u)du —|r(u)du
° Define £(s)=V(s)e .dg(s)=e: dV(s)—r(s)(s)ds. Thus, the present value of the
s ! dA(s)
collateral cash-flows equals: E° {g"(t)+.[d§(s)+£r(s)ds—m]§(s)ds—§(T)] which can be
S
t
T —sr(u)du
simplified as: ElQﬂ j(r(s)ds —%}V (s)e , Which leads to the stated expression.
S
t



s

AT ~[rwau
= J (r(s)—ry(s))V(s)e *  ds (3.4)

dA(S)) =c(s)ds and the latter expression

In the case of cash-collateral, with collateral rate c(.),

T —jr(u)du
actually simplifies to E?’ I(r(s)—c(s))V(s)ez

t

ds | (see equation 3 in Piterbarg (2010) or

equation (26) in Castagna (2013)). Unsurprisingly, the present value of collateral cash-flows equals
the present value of the margins (accrued interest point of view) as is standard with any cash account.

Obviously, in the case where the collateral rate C() equals the risk free rate r(.), the present value

of collateral cash-flows is equal to zero since there is no net margin associated with the collateral
amount (“costless collateral”).

Though the clearing house is assumed to be default-free (in our theoretical setting), clearing
members are lending to that clearing house at a different rate. From the point of view of clearing
members, r(s)—c(s) is the convenience vyield associated with the collateral account and

(r(s) —C(S))V (s)ds is simply the margin associated with the management of the collateral account,

between s and s+ds.

4. Recursive pricing formulas and collateralization schemes.

4.1 Collateralization schemes.

A collateralization scheme relates settlement prices p° (t) and the value of the collateral account
\ (t) For instance, in the so-called perfect collateralization case, at any point in time, the value of
the collateral is equal to the settlement price: V(s) = p°(s), for all 5,t<s<T . For an asymmetric

CSA, we would have V (s) = max( p* (s),O) orV(s)= min(pS (S),O) )

We provide a comprehensive treatment of collateralization schemes by introducing some haircut
ratios. When a security is being posted in a collateral agreement, some haircut is usually applied.

|ll

Given potential “runs on repos”, it makes sense to deal with time varying haircuts. Let us denote by

©) the haircut ratio at time s associated with security A. At time s,t<s<T, the amount of
a,(s

collateral account is then equal to V (s) = &, (s) p* () and the number of posted securities is given by

a,(s)p® (S)/A(s) . For an asymmetric CSA, a,(t) =0,1depending on the sign of p°(t).

4.2 The basic discounting result

Let us focus on the changes in the variation margins with such collateralization features. Using the

V()
At

ongoing notations, the variation margin dVM (t) =V (t +dt) — ) A(t + dt) becomes:

10



VM (1) = d (@, () p° (1)) — o, (0) P° (1) DAH)/ A(t) (4.1)
Let us consider a trade initiated at time t and unsettled at t+dt. The net cash-flow at time t is
given by: V (t) — p° (t) = (a4 (t) —1) p* (t) . The net cash-flow at t +dt is provided by:

p° (t+dt) =V (t+dt) +dVM (t) = (1-a,(t)) p° (t +dt) + aA(t)(dps t)-p(t) dA(t)/A(t))
In the simplified setting where no defaults occurs at t+dt, the previous cash-flow is paid for sure.
The net expected (under Q”) present value is equal to zero; This can be written as:
Q’ S S S S dA(t)

EX | (aa®)—1) p°(t) + (1—r(t)dt) x| (1—a,(t)) p° (t +dt) + e, (t)] dp°(t) — p (t)m =0 (4.2)
This leads to the pricing equation (not accounting for CVA/DVA effects, i.e. default-free
counterparties entering a collateralized trade):

EX [dp® (1) ] = ((1- s () r(t) + 2, ®)r, () p° (t)dt (4.3)
An intuitive way to look at this drift restriction is to consider that a, (t) p®(t) is invested in the
collateral account with expected rate of return r,(t). The remaining part (1—aA(t)) p°(t)

corresponds to a cash-flow invested in the cash market at expected rate of return r(t). Equation
(4.3) corresponds to equation (6) of Piterbarg (2010) (remembering that his funding rate r_ is
actually a default-free short rate for cash lending or borrowing). When there is a unique borrowing

and lending short rate r(t) , our result is also consistent with Castagna (2013), equation (29).

In the case where X (T)is a function of an underlying asset S(T), further results can be stated. If we

assume that the underlying asset is repoable (with no haircut), the drift under Qﬁ of this asset is

equal to the repo rate (minus the continuous dividend rate). This is consistent with equation (49) in
Castagna (2013) or equation (4) in Piterbarg (2010). When the asset is not repoable, we need to use
the short rate r(t) instead of the repo rate as in equation (29) in Castagna (2013). This is of course

more problematic from a calibration point of view, since we cannot get rid of unobserved r(t).

Equation (4.3) can be restated through the simple discounting formula:

p° (1) =EY {x (r)exp[—f((l—aA(s))r(s>+aA(s)rA(s))dsﬂ (4.4)

t
The most common market feature consists in using haircut ratios below 1 (overcollateralization) and
is associated with ¢, (t)>1. 0<«,(t) <1 corresponds to under-collateralization, i.e. the amount of
collateral is only a fraction of the value of the settlement price (or PV) of the trade. If ¢, (t)=0, no

collateral is being posted and provided that the counterparties are default-free, we are led back to
the standard discounting at the default-free rate r(.).

4.3. The basic discounting result with perfect collateralization.

With perfect collateralization, the variation margins paid throughout the life of the trade perfectly
match the potential loss in case of default of one of the parties. This corresponds to the case where

a,(t)=1.Thus:
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p(t)=EY {x (T)exp[—} rA(s)dsH (4.5)

Under perfect collateralization, the settlement price is obtained by discounting the terminal payoff at
the risk-neutral expected rate of return of the collateral. This contrasts with using the default-free
rate for uncollateralized trades. The pricing measure remains the usual one, associated with the
default free savings account.

Pricing equation (4.5) also extends already known results for futures contracts (see Duffie (1989)).
Actually, the pricing of futures contracts corresponds to cash collateral and collateral rate set to zero:

¢(.)=0. The settlement price is then a Q” - martingale.

t

Let us remark that when I, =T and A(t)=ﬂ(t)=eprr(s)ds], there is no difference with the
0

ordinary pricing equation for default-free uncollateralized trades: In both cases is done at the short-

.
term default-free rate p°(t) = EtQﬂ {X (T)exp(—jr(s)dsﬂ. This corresponds to “costless collateral”
t

according to Johannes and Sundaresan (2007) terminology. Thus, when the collateral rate equals the
short-rate, uncollateralized prices are equal to (perfectly) collateralized prices.

dAWD) T _

$
At coy o Wt

A simple case corresponds to the use of USD cash collateral. We then have:

where C$(t) is the effective fed funds rate and the USD settlement price is provided by

ps(t) = EtQﬁ {X (T)exp[—].css(s)dsﬂ, i.e. the so-called “OIS discounting” (see for example equation
t

(3.5) in Fujii, Shimada and Takahashi (2010)).

On technical grounds, let us remark that the general discounting formula with partial collateralization
(equation (4.4)) is actually embedded in the simplest case of perfect collateralization: We can write
the margin associated with managing the collateral account (see equation (3.4)) as

(r(s) =1, ())V(5) =(r(s) ~ 1 (5)) P°(5) With £;(s) = (1=, (5))r(s) + @, (S)ra(S) - The PV of variation
margins can be computed under the assumption of perfect collateralization and a modified expected

rate of return on the collateral r,:(s). Equation (4.5) then turns out to be identical to equation (4.4).

4.4. Optimal choice of posted securities.

We assume that a set of eligible securities and cash currencies {1,...,I} can be posted in the

collateral account. To ease the exposition, let us assume that pS (t)<0. The pricing entity is thus

collateral giver. We assume that the collateral giver chooses the posted collateral and that the
collateral pool can be wholly substituted at any time. We follow the same line of reasoning as in
subsection (4.1) with minor adaptation. The collateral giver chooses the collateral asset such that the

expected (under Q”) net present value is maximized. For such a choice, the expected net present

value is equal to zero. If collateral i is posted, following equations (4.2) and (4.3), the expected NPV

12



is equal to EtQﬂ [dps(t)]—((l—oc,Ai (t))r(t)+0¢A ®r, (t)) p°(t)dt . The posted collateral thus
maximizes (1_0‘/\ (t))r(t) +a, (t)r, (t) and the pricing equation becomes:

o {dps (®)
ERNU)

As a consequence the previous discounting result is extended to:

} =max,, ((1—% ©)r()+a, (O, (t))dt (4.6)

p*(t)=EY { X (T)exp(— | (maxie{lwl} (1, (5))r(s) + s ()1, (s))dsﬂ (4.7)

The  optionality in the collateral choice  magnifies the discount rate to

maxie{lv__wl}(l—aA (S))r(s)+oz,Ai (S)ry (s) but the pricing rule relating terminal cash-flow X(T) to

settlement price p°(t) remains linear (provided that default-free lending and borrowing rates are

equal). Equation (4.7) corresponds to and extends equation (21) in Fujii and Takahashi (2011) (see
also Fujii et al. (2010)).

A CSA (or another collateral agreement as in a tri-party repo) provides the set of assets that can be
posted. The settlement price is specific to the CSA and there are thus many potential settlement
prices depending upon the collateral pools. Thus novation trades or the backload of ISDA CSA trades
to LCH.Clearnet, which may involve changes in the collateral pool, are rather intricate.

5. Multiple curves.

An important application of the above techniques is the pricing of interest rate swaps or forward FX
contracts under the perfect collateralization scheme. In a market where lending and borrowing rates
are equal, pricing rules are linear, leading to the use of specific discount factors. Suitable changes of
measures are introduced and connected to such collateralized discount factors. In the case of cash
collateral paying overnight rate index (i.e. EONIA or fed fund rate), settlement prices of collateralized
trades are obtained by discounting with the overnight rate. Convexity adjustments are derived when
dealing with swaps associated with different collateral rates.

It is worth mentioning that a number of papers, including Kijima, Tanaka and Wong (2009), Henrard
(2009), Mercurio (2009, 2010a, 2010b), Bianchetti (2010) have considered a decoupling between
discount factors and forward rates, with important applications to the pricing of Libor derivatives or
cross-currency swaps. Though our main concern is the pricing of collateralized swaps, we hopefully
end-up with similar results.

5.1. Changes of measure and further notations.

We will define a set of measures, equivalent to Q”, denoted as QTA associated with the collateral

o 1)

B T
O {exp(—f rA(s)ﬂ
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account by their density:

(5.1)




QTA is named “collateralized forward measure” by Fujii et al. (2010)*°. The density process of QTA

Q!
dQ”

(with respect to Q) is defined as usual by: (fTA (t) = EtQﬂ [ } Let us further denote:

B,(t,T)=EY {exp{—] rA(s)dsH (5.2)

B, (t,T) is the date t - settlement price of a cash-flow of 1 paid at date T collateralized with A. It
can then be considered as a A -collateralized discount bond price. For instance,

.

Bes (t,T)= EtQﬁ l:exp[—.[cs;(s)dsﬂ corresponds to the settlement price of a zero-coupon
t

collateralized with cash remunerated at fed funds rate.

We can write the density process as:

exp[—j u(s)dij B, (L.T)

M) = 5.3
§T ( ) BA (O,T) ( )
The usual forward measure Q7 is defined as:
.
p exp(—jr(s)}
0Qr . (5.4)

dQ’ ~ B(0,T)

t

T
under the standard notation: B(t,T):EQ/; {exp[—jr(s)dsﬂ. The measure with density
t

exp(—]‘r;(S)j/EQ” {exp(—]‘r;(s)ﬂ and 1,(s) =(1—a,(5))r(s) + a,(s)ry(s) encompasses the

collateralized forward measure and the usual forward measure: The former corresponding to a
perfect collateralization scheme, the latter to a non collateralized framework. While we could
actually account for partial collateralization, let us for simplicity go back to the perfect
collateralization scheme. The change of measure technique leads to writing the settlement price

pa(t) as:

PS(t) =B, (L T)x EX [X(T)] (5.5)
Since we have considered different collaterals, it is interesting to switch from one to another. Let us
denote by A,B two kinds of collateral assets and r,,I; the corresponding Q’B - expected rates of
return. We then have:

o

T 0

S el ol

(5.6)

%Let us remark that the density of QTA with respect to Q” only involves the (expected) rate of
return of the collateral. Thus, we depart from the change of numeraire and notational setup used for
instance by Geman, El Karoui and Rochet (1995) or Schroder (1999).
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We denote by &84 (t) = EX [dQTB/dQTA] the density process of Q7 (with respect to Q). It can be
shown that &4 (t) =¢&7 (t)/&(1).

5.2. Generic convexity adjustments.

We can think of comparing two derivatives assets, with same terminal payoff, perfect
collateralization, but different collaterals. A typical example would involve a Eurodollar future
(collateral rate equal to zero) and a FRA collateralized at effective Fed funds rate.

For a given payoff X(T) collateralized with A, its T - forward settlement price p,; (t)is equal to
Par (t):EtQTA[X(T)] . Indeed, 0=B,(t,T)x EtQTA[X(T)— pAVT(t)J . Thus we are to compare

EtQTA [X(T)]and EtQTB [X(T)]. This involves a covariance term between the payoff and the spread

between (expected) rates of return on the two collaterals:
.

E [X(M)]= EtQT“|:XA(T):|Jr B.(t.T)/Bg (t,T)Cov® (exp[—j(rB —rA)(s)ds],X(T)J (5.7)

t
We refer to the Appendix for proofs, computations and further details in a Brownian filtration setting.
Let us remark that one can extend the approach to partially collateralized deals, thus providing an
integrated framework as already mentioned in the previous subsection (see Piterbarg (2010)).

5.3. Linear pricing rules and (perfectly collateralized) discount factors.

Let us first remind that within a perfect collateralization framework as defined above, there is no gap
risk when unwinding a trade, thus no independent amount or initial margin based on non linear
measures of risk and thus no resulting portfolio effect.

In a number of cases, the expected rate of return of the posted collateral, r,(.) is not independent of
X (T) . This may lead to a number of quanto effects. However, this does not change the point that in

a perfect collateralization framework and provided that the collateral rate does not depend on the
sign of the PV, the pricing rule remains linear. If one considers the pricing of a collateralized terminal

cash-flow X,(T)+ X,(T), then the cash-flows associated with the variation margins will be the sum
of those associated with X,(T) and X,(T) considered independently. As a consequence, after
discounting these variation-margin cash-flows at the default-free short rate under Qﬁ , we will have
that the settlement price at time t of the collateralized terminal payoff X (T)+ X,(T), is simply
p (t)+ ps(t) . Similarly, the settlement price at time t of the collateralized terminal payoff

ax X(T), where « is a real number, is a x p°(t).

If we consider square integrable payoffs, from Riesz representation theorem, we can write

p®(0) = EY [£x X(T)] for some square-integrable random variable &. Taking X(T)=1, we get
B,(0,T)=EY [£]. Then, we can define a new probability measure Q} from its density:
dQTA/dQﬂzf/EQﬁ [£] . As a consequence, the pricing rule p®(0)=B,(0,T)E® [X(T)], where
B,(0,T) is the collateralized discount factor, is not surprising but a direct consequence of the linear

structure of cash-flows in perfect collateral schemes.
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5.4. OIS contracts with cash collateral.

We will first focus on the simplest payoff, a stylized (with continuous compounding) overnight
indexed swap, where:

X (T)=exp(y(T —to))—exp[jfcf(s)ds] (5.8)

t0
Where 1, is the trade date, T the maturity date of the trade. y is the (continuously compounded)

fixed rate of the collateralized overnight indexed swap, while C$(t) is the cash collateral rate, say the
effective Fed funds rate.

The settlement price p°(t), t, <t<T, is provided by:

s T
pS(t)=EY {X (T)exp(—jc“‘ (s)dsﬂ (5.9)
t
It is worth noting that the compounding and discounting rates are equal leading to simplifications.

T
Under our standing notations, B, (t,T) = EtQﬁ l:exp[—'f&(s)dsﬂ . Thus,
t

p*(t)=exp(y(T —t,))B. (t.T) - exp[f[c$ (S)dsj (5.10)

It can be seen that B, (t,T) acts as a discount factor.

Let us consider a par trade at inception, i.e. t =t; and settlement price equal to 0. Then, the par rate,

at date t, of such a collateralized OIS contract with maturity date T, y$ (t,T), is derived from:
exp(-y*(t,T)x(T -t)) =B (t.T) (5.11)

Let us remark that the discount factors BC$ (t,t+5)are directly related to market observables, i.e.

par rates of collateralized OIS. As a consequence, we can readily write settlement prices of
collateralized OIS contracts in a model free setting (up to interpolation schemes).

5.5. Libor swaps.

Let us denote by L(T,T +5) the Libor (or Euribor rate) at time T for maturity . The case of a

Libor FRA contract is such that h(T +5):5X(FRA— L(T,T +5)) where & is the coverage factor
and FRA is the contractual FRA rate. We then have:

3 () = 0B, (1.T +8)x(FRA-E¥ [L(T,T +6) ) (5.12)

The par rate L, (t,T,T +5) is the FRA rate such that the settlement price at date t equals zero.
Ly (t, T, T +6) is a forward collateralized (with A) Libor rate. We have:

Ly (tT.T+8)=EX[L(T,T +5)] (5.13)

The forward Libor curve depends upon the collateral choice. For instance, one might think of using
LCH.Clearnet type contracts, where cash-collateral is posted in the same currency as the one of the
interest rate swap contract and earns the corresponding reference overnight rate. We would then

c$
have L (t,T,T +5)= EtQ””' [L(T,T +5)]. Such OIS discounting corresponds to Kijima et al. (2009)

or Mercurio (2009). If we were to think of Eurodollar futures, the (collateralized) forward Libor rate
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would be different, since the latter case, the collateral rate equals zero and not the reference
overnight rate.

We can then write the settlement price of a collateralized FRA contract as:
P (t)=0B, (LT +8)x(FRA-L, (LT.T +5)) (5.14)
which involves market observables or quantities that can be derived from market observables. From

this and the linearity property of settlement prices, we can compute the present value of Libor swaps
collateralized at overnight rates of the LCH.Clearnet type.

5.6. Collateralized forward FX contracts.

The contractual payoff is such that: X (T)=FX ¥*(T)—K where, for simplicity, we state that:

|:x€’$(r):FX€’$(t)eprird$’€(s)dstexp —Q(T —t)+of (WET)-We(D)) | (5.15)

Let us assume that the collateral is posted in cash USD and earns the effective fed funds rate c®.

s T
Then, applying the pricing equation: p®(t) = E® {X (T)exp(—fc$ (s)dsﬂ, we obtain:
t

pS (t) = FX ¥ (1)E®” {exp(—}(c"(s) —ird®* (s))dsﬂ ~KxEY {exp[—]@ (s)dsﬂ (5.16)

;
Let us remark that the discount factors EtQﬁ$ {exp[—jﬁ(s)dsﬂ =B (t,T) can be obtained from the

t
quotes on the USD interest swaps collateralized at effective fed funds rate. Thus, from the quotes of
the collateralized forward FX contracts, we can derive more discount factors. More precisely, let us

denote by FX$€’$ (t,T), the collateralized (in cash USD) forward price of one euro. It is such that:

s T
0=FX**(t)EY {exp(—j(&(s)—ird$’€(s))dsﬂ—FX$€/$ (t.T)B. (t.T). Thus, we can compute the
t

s T
discount factor EtQ/’ {exp(—j(&(s) —ird** (s))dsﬂ from quoted forward FX contracts. As for a non

t
par collateralized contract, with contractual payoff X(T)=FX“*(T)-K, the settlement price at
time t is simply provided by B (t,T)><(FX$€/$ (tT)- K) )
We can then compute settlement prices of cross-currency swaps as a simple extension of forward FX

contracts.

6. Asymmetric CSA, CSA with thresholds.

6.1. No default risk

In a typical asymmetric CSA framework, no collateral is to be posted if the settlement price is above
zero while the value of posted collateral equals the settlement price is negative if it is negative. Thus,

V(t):min(O, p® (t)):(Oxl{ps(t)w} +1X1{ps(t)30}j p*(t). This corresponds to a haircut being set to

" This illustrative example, where W¢is a Brownian term independent of other involved quantities
and the volatility is assumed to be constant can readily be extended.
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a,(t)=0if p°(t)>0 and a,(t)=1, if p*(t)<0. Thus, going into the same lines as in sections 1 and
4, the applicable discount rate is R(t)l{ps(t)>0} +rA(t)1{ps(t)<0} where R is the default-free borrowing

rate. We obtain the pricing formula for default-free counterparties and asymmetric CSA as a special
case of pricing with haircuts:

P (t)=E* {X (T)exp{—f (R(S)l{ SRR RN O CF jdsﬂ (6.1)

6.2. CVA and asymmetric CSA

In an asymmetric CSA, only one party is protected against the default of the other, thanks to posted
collateral. One could either consider that the party that is not posting collateral is default-free and
the pricing formula stated in previous sub-section is valid. However, in most cases, one would need
to take into account the price impact of counterparty risk.

As outlined by Brigo and Morini (2010), setting-up the closeout payment in case of default is an

intricate issue. The easiest way to go is to compute so called “risk-free”*?

present values, either by
discounting at overnight rates, as in the computation of the settlement price of a perfectly
collateralized trade, collateralized at overnight rate or by using an uncollateralized swap curve. The
previous approach is questionable in our asymmetric CSA case. Using a recovery based upon
settlement price in the spirit of Duffie and Huang (1996) is simpler and provides useful guidance: we

can derive a settlement price coping both with CVA and collateral valuation adjustments.

First, let us recall that we only deal with the default risk of one party due to one one-side
counterparty risk protection. Thus, depending on the party’s point of view, the settlement price is
free of CVA or DVA. We can take the point of view of a dealer, typically an investment bank, involved
in trades with a sovereign counterparty and thus exposed to that sovereign default. We do not detail
the resolution process of sovereign default on derivatives contracts and assume that sovereign
default intensity process, A and recovery rate ¢ are given. We chose here a fractional recovery of
market value approach, as in Duffie and Huang (1996), a route which is not privileged by market
practitioners, but which is meaningful in our context. Then, the loss in case of default, which occurs

between t and t+dt with conditional probability /l(t)dt is simply equal to (1—5) ps(t)l{ps(t)>o}. By

considering, as before, the expected change in the settlement price, prior to default, we readily get:

Q’ s _ s
EY [ dp (t)]_((R+/l(l—5))(s)1{ps (S)>0}+r,\(s)1{ps (S)<O})p (t)dt (6.2)
As above, we focused on the generator of the BSDE, which now takes the form
g(p):(R+i(1—5)) p"+r,p  and therefore remains piecewise linear. The pre-default portfolio

value is simply written as:

12 “Risk-free” means that an uncollateralized swap curve or overnight rates in the interbank market
are to be used in the discounting process. While this can be understood from an historical
perspective, when the default component in effective fed funds rates or EONIA was neglected or
when swaps contracts were deemed default-free and CVA/DVA effects could be neglected, the
market terminology is misleading. “Recovery of swap”, similarly to “recovery of Treasury” would be
more explicit.
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T

p*(t)=EY {x (T)exp(—_f((R +A(1- 5))(3)1{p5(5)>0} +1, (s)1{ps(s)<o}jdsﬂ (6.3)

t

Where the term /1(1— 5) accounts for the counterparty risk adjustment.
7. Trade contributions in a non-linear setting.

It is interesting to go back to the BSDE stated in equation (6.3). The terminal value is X(T)
corresponding to contractual payoff and the generator g(p)=(R+A(@1-5))p"+r,p , with
p"=max(p,0) and p~ =min(p,0). We recall that in a Brownian filtration setting, such BSDE is a
standard mathematical finance tool (El Karoui et al. (1997)) and admits a unique solution. pS (t) is

also known as the conditional g — expectation of X (T) (see Peng (2004)). Let us remark that the

collateralization scheme is embedded in the shape of the generator of the BSDE. Moreover,
properties of the generator translate to the price functional (Peng (2006)). For instance, in an
asymmetric CSA, the generator is positively homogeneous. Thus, the price functional is also

positively homogenous: for a positive real number A, the price at time t of AX (T) is equal to
Ap®(t). If R+A(1-5)=r,, the generator is concave and thus the functional associating the
contractual payoff (terminal value) X (T) to current settlement price p° (t) is also concave™. Non
linearity is associated with portfolio effects: under the assumption that R + ﬂ(l— 5) >T,, the present

value of a portfolio of two trades X,(T)+ X, (T) is greater than the sum of the present values of

the two trades considered in isolation.

In such a non-linear context, one needs to consider pricing at portfolio level and the settlement price
has to be understood as the present value of a portfolio of trades against a given counterparty
(possibly a CCP) and under a specific CSA.

Two issues need to be addressed, marginal pricing and trade contributions. As will be shown these
two issues are closely connected and are quite intuitive on a financial point of view.

Regarding marginal pricing, we consider the present value impact of a small trade with payoff £Z,

€ € R being a scaling factor. Thus the portfolio payoff translates from X (T) to X (T)+¢Z. Let us
denote by (pS +6‘Z)(t) the settlement price after inception of the new trade. The generator

g(p)=(R+A(1-5))p" +r,p is differentiable with respect to p, except for p=0, which actually

B Actually, if R+ A(L-35)>r,, the generator is super-additive and the price functional, associated
with an asymmetric CSA, too. Conversely, if R+ A(1-0) <r,, the generator is sub-additive and the

price functional is sub-additive and thus convex, thanks to positive homogeneity. Concavity or
convexity are useful properties, since when the price functional is not differentiable with respect to
terminal payoff, we can still consider a non-empty subdifferential and deal with left and right
Gateaux derivatives, which stills allows for simple one-sided first order expansions.
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deserves a specific treatment . Thanks to proposition 2.4 of El Karoui et al. (1997),

£— ( P+ SZ)(t) is differentiable with derivative at & =0 is given by:

EY {z x exp(—!(( R+A(1- 5))(3)1{p5(5)>0} +1, (5)1{p5(5)>o})dsﬂ (7.1)

The previous term is known as the directional derivative of the price functional around the current
portfolio in the direction of the new trade Z . Marginal pricing is based on the first order expansion:

T

(p°+2Z)(t)=p° (t)+£EY {Z x exp[—j((R +A0- 5))(3)1{p5(5)>0} +r, (s)l{ps(s)w}jdsﬂ +0o(e).

t

.
The deflator (or stochastic discount factor) exp(—j'((R +/1(1—5))(S)1{p3(5)>0} + rA(s)l{pS(S)>0}jdsj is

t
the functional derivative (or Fréchet derivative) of the price with respect to terminal payoff. The
important point is that the first order term is linear in Z , thus leading to standard pricing methods.

We have already noticed that, in the case of an asymmetric CSA, the settlement price is positively
homogenous with respect to terminal payoff. Thus, Euler’s equation holds and can be written as:

T

p*(t)=EY {x (T)exp[—j(( R+A(1-9)) (s)l{ps o T T (s.)l{ps <] j dsﬂ (7.2)

t
T

where exp[—f((R+/1(1—5))(S)1{p5(s)>0}+I’A(S)1{ps(s)go})d8} is the derivative of the price. By

t

connecting the already stated pricing formula to Euler’s equation, we can use standard risk allocation

techniques to compute the trade contributions. Let the portfolio payoff X (T) be the sum of J
individual trades X (T)=X,(T)+:--+ X, (T). Then according to Euler’s allocation rule, the trade

contribution of X (T to portfolio present value p°(t) is provided by:

Etoﬂ X, (T)exp(—!((R + /1(1_5))(3)1{,,5 (950) + rA(S)l{ps(s)<O})dsj (7.3)

This is not to be confused with the standalone present value:

EtQ/’ X, (T) exp(—!(( R+A(1-9)) (S)l{ 0 +1, (S)l{pJ$ <) )ds] (7.4)

Euler’s allocation rule is totally additive, i.e. the sum of trade contributions is equal to the portfolio
present value. Unlike the standalone present values, the trade contributions involve a standard
(linear) expectation.

It can be seen that the trade contributions and marginal prices are computed quite similarly. Let us

once again emphasize that the collateralization scheme is embedded in the shape of the generator
T

and thus in the stochastic discount factor exp(—]((R +A(1- 5))(5)1{ps(5)>0} + rA(S)l{pS(S)<O})de .

t

“When p=0, the first-order expansion is readily derived and leads to different left and right

derivatives.
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In the perfect collateralization case, we introduced the suitable collateralized forward measures. This
can readily be extended to locally proportional haircuts and therefore to asymmetric CSA. We can

introduce a CSA and portfolio specific change of measure:
T

o exp(— [ (( R+ AW=8)) (N s+ Ta (W g )ds}
& 0 (7.5)

d B T
Q E {exp{— j (( R+A(L-6)) ORI AC )dsﬂ

0

.
Let us further denote by B, ., (t,T)= EY {exp(—j((R+/1(1—6))(s)1{ps(5)>0} + rA(s)l{pS(s)So})dsH,
t

the collateralized discount bond price. Then, the trade contribution or the marginal price of X, (T)

X ,CSA

can simply be written as B, ., (t,T)EZ" [Xj (T )] Let us eventually remark that the changes of

measure and the pricing formulas mimic and extends those stated in section 5 for the perfect
collateralization scheme.

Conclusion

In this paper, we kept as closely as possible to mainstream mathematical finance. It has been shown
that well known concepts and tools can be used with minor adaptation to the collateralized pricing
issues: On one hand, we used Cvitani¢ and Karatzas (1993) framework to cope with different default-
free borrowing and lending rates. On the other hand, we used varying haircuts to provide a generic
discounting approach that applies to a wide range of contracts, with perfect or partial
collateralization. Within that framework, we provided suitable changes of measure to compute
prices or trade contributions.

Though we dealt comprehensively with various kinds of collateral and collateralization schemes, we
left aside the pricing impacts of initial margins. This is an important topic but the rules governing the
computations of initial margins are not yet stabilized. We did not investigate the numerical issues
associated with solving BSDE in the asymmetric CSA case and the connections with the standard
approaches to the computations of CVA. This is left for future research.
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Appendix: Convexity adjustments

Qr Qf dQ; Qf dQy
E, [X(l')] E, {dQT X(T):|/E |:dQT} Thus,

exp( ]' My — Iy (s)dsJ

t

<ol o]

A ! Bs (t.T)
It can easily be shown that: E¥ | exp —I(rB —r,)(s)ds :B—tT . Thus,
t A

B, (t.T)
E [X(T)] = E¥ [ X, (T)]+ %Cov@ (exp[ j( rA)(S)de,X(T)J

which involves a covariance term between the payoff X (T) and the stochastic spread terms Iy —T,.

E¥ [X(T)]=EY X(T)

Let us consider the special case associated with a Brownian filtration. Since fTA is a positive Q” -

martingale, we have: d;?—A(g):o-A (t,T)dw/(t), é‘TA(t)ngaA(S,T)de(S)] where W/ is a Q7 -
0

T

Brownian motion. Since & isa Q' - martingale and using Girsanov theorem, we have:
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PA) = gUaB (s, T)dWg" () —oa (S, T )dW, (s)],

Where W,"" WA are Q/ - Brownian motions.

EX [X(T)]=E¥ ﬁ:((:)) X (T)} =EY {gﬁ% (5, T)dWRT (5) —oa (5,T ) dWAT (s)] X (r)} .

o (t,T ) is related to collateralized discount bond prices  since  from

B,(t.T)=B,(0,T)&" (t)exp[J: rA(s)ds] , we get d;\“(sg)) =r,(t)dt+ o, (t,T)dW/ (t).

dp,- (t
Let us assume that X(T)>0, thus p,(t)>0. ;A’T((t)) =0, (t,T)dWAX'T (t), where W' is a Q-
AT

;
martingale and X(T)=EtQTA[X(T)]8(J.O'X (S,T)dWAX’T(S)j. This leads to the following relation
t

between forward prices under collaterals A B:

EX [X(T)]=E¥ [X(T)]EY {gUJX (s, T)dw,." (S)jg[]‘aB(s,T)dWBA’T (s)— o, (s T)dWL T (s)ﬂ

t
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